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1. Introduction

One of the main tasks for the experimental and theoretical programme in connection

with the CERN LHC is to investigate the mechanism of electro-weak symmetry breaking.

Central to this study would be the measurement of the couplings of any observed Higgs

scalar to the electro-weak bosons. This can be performed either by studying the decays

H → ZZ,WW [1, 2] with contributions from all production channels, or the production

process pp → Hjj [3 – 5] through weak boson fusion (WBF) [6], as shown in figure 1(a),

with contributions from all identifiable decay channels. The Higgs plus two jet signature

also receives contributions from Higgs boson production through gluon-fusion mediated

through a top-loop, as illustrated in figure 1 (b).

However, the Higgs plus dijet-sample can be biased towards WBF by suppressing

the gluon-fusion channel through a combination of cuts, requiring both well-separated jets

(effectively suppressing the largest component of gluon-initiated processes) and suppressing

events with further central jets (produced predominantly in the gluon-fusion channel, since

here the two tagging jets are colour-connected).

For the gluon fusion process, the first radiative corrections have been calculated within

QCD [7, 8] using the heavy top mass effective Lagrangian [9 – 11]. For the WBF, both the

radiative corrections within QCD [12, 11, 13, 14] and the electro-weak sector [15] have been

calculated. The radiative corrections to the WBF channel are small, 3% − 6%, and there

is even partial numerical cancellation between the QCD and electro-weak contributions. It

would therefore seem that the Higgs coupling to electro-weak bosons can be very cleanly

studied with a Hjj-sample.

Until recently, the irreducible contamination in the extraction of the ZZH-coupling

from interference between the gluon fusion and WBF processes was ignored in the literature.

At tree level, such interference is only allowed in amplitudes where the two quarks have

the same flavours, but their contribution is kinematically suppressed by the requirement
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Figure 1: (a) The WBF process for Higgs production in the Standard Model and (b) the equivalent

gluon-fusion diagram mediated through a top-loop.

of a t ↔ u-channel crossing, as discussed in ref. [16]. These interference terms were later

also included in the calculation reported in ref. [15], where the full electroweak corrections

have been calculated, and which also took into account other crossing-suppressed one-

loop amplitudes. In the present paper we will report on the calculation of the processes

allowed at the one-loop level which do not suffer from the suppression stemming from the

requirement of a t ↔ u-crossing. As will be explained below, one finds at order O(α2α3
s)

an interference term between the gluon- and Z-induced amplitude which is not allowed at

O(α2α2
s) by colour conservation. The W -induced amplitudes are crossing-suppressed and

therefore not taken into account. The diagrams where the vector boson is in the s-channel

can be safely neglected because they are strongly suppressed by the WBF cuts.

Given that electroweak corrections to the WBF process, which are formally an order

O(α) correction to an O(α4) process, have been shown to be relevant for this important

process [15], simple power counting alone suggests that the size of the irreducible contami-

nation due to the discussed interference effect should be checked. We will elaborate below

that arguments in the literature which are based on simplified assumptions do not capture

all effects found by doing the full one-loop calculation.

In the following section we will briefly sketch the calculation before discussing our

results in section 3, which are summarized in the conclusions. The appendix contains an

extensive list of the master integrals needed for this calculation. Most of these integrals

have not been reported in the literature so far.

2. The calculation

We set out to calculate the helicity amplitudes necessary to form the loop interference

terms and the real emission contributions. Sample diagrams are shown in figures 2 and 3.

As discussed in ref. [16] this is the lowest order contribution to the interference between

ZZH and ggH-processes for non-identical quark flavours and helicity configurations, and

for identical quark and helicity configurations the loop amplitudes are the first order which

does not require a kinematically disfavoured crossing.

The amplitudes have four non-zero helicity components, which we label by + + ++,

− − −−, − + +− and + − −+. Due to parity invariance of the kinematical part of the
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Figure 2: Example of contributing one-loop interference terms: (a) MgZM∗
g and (b) MggM∗

Z .

There are four contributing topologies for each gluon-fusion and Z-fusion process.

◮

◮

Figure 3: One of the real emission processes which contributes at the matrix element squared

level.

amplitudes, only two of them are independent. By using the spinor helicity formalism we

have defined projection operators on each of these amplitudes. In practice, we calculate

the amplitudes with all momenta incoming (and therefore summing to zero); to map to

physical scattering kinematics, crossing relations are applied easily in the end.

The leading order amplitudes, denoted by MZ and Mg (see figure 2), are proportional

to a colour singlet and a colour octet term. The colour singlet is formally of order O(α2)

whereas the octet is of order O(α2
s). The virtual corrections, which we call MgZ and Mgg

respectively, are mixtures of octet and singlet terms. For the intereference term we need to

consider only the octet part of MgZ and the singlet part of Mgg. One finds that only four

one-loop five-point topologies for each amplitude survive this colour projection. As was

already pointed out in ref. [16], the colour singlet cannot interfere with the colour octet

tree amplitude for different quark flavours. However, a new colour channel opens up at

order O(α2α3
s) which is neither flavour nor kinematically suppressed.

The loop amplitudes require the evaluation of one-loop five-point tensor integrals with

partly massive propagators and external legs. We apply the reduction algorithm outlined

in ref. [17, 18] to express each Feynman diagram as a linear combination of 1-, 2-, and

3-point functions in D = 4 − 2ǫ dimensions and 4-point functions in D=6. The same

algorithm has been successfully applied to a number of one-loop computations and further
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details can be found elsewhere [19 – 22]. The coefficient of each integral, which is a rational

polynomial in terms of Mandelstam variables sij = (pi + pj)
2 and masses, was evaluated

symbolically using FORM [23] and simplified using Mathematica [24]. Both steps were

fully automated. The algebraic expressions were checked by independent implementations,

both amongst the authors and with another group [25].

After the algebraic reduction, all helicity amplitudes for both cases, gluon and weak

boson fusion, were obtained as linear combinations of a certain number of scalar integrals.

We choose this basis of so-called master integrals (MIs) in accordance with ref. [26], i.e.

our MI’s are D-dimensional two-point and three-point functions (ID
2 , ID

3 ), and (D+2)-

dimensional four-point functions (ID+2
4 ). Schematically

M =
∑

j,α

kjαIj({sα,mα}) , Ij ∈ {ID
2 , ID

3 , ID+2
4 } (2.1)

where the summation over α indicates the summation over different argument lists {sα,mα}
of the relevant MI. The conventions for the arguments and the analytic forms of these are

given in the appendix. No one-point functions appear in the reduction, and also two-point

functions are absent in the amplitudes of MgZ . Furthermore, coefficients of some of the

integrals which arise in several topologies sum to zero: if the tree resulting from a cut of an

internal line of a master integral corresponds to helicity forbidden tree level processes one

can immediately infer the vanishing of the corresponding coefficient. In our algebraic tensor

reduction approach we are able to verify such cancellations and enforce them analytically

before the numerical evaluation of the cross section (for a nontrivial example see ref. [26]).

The coefficients we obtain through this procedure can be too large to be of use in a

printed form (their simple polynomial structure means that numerical evaluation is, how-

ever, fast). We performed several algebraic checks of relations between coefficients of differ-

ent topologies and helicity configurations. The coefficients are included as supplementary

material to this paper.

As most of the required integrals are not provided in the literature, we have evaluated

representations in terms of analytic functions valid in all kinematic regions. We give our

result for these integrals in the appendix, as they might be of use for other calculations1.

The IR structure of the interference term is very simple. It is easily extracted from

the result by focusing on the IR divergent triangles. All MIs with single poles drop out.

Only triangles with double poles survive. This results in an expression

∼ αsCF [(−s13)
−ǫ + (−s24)

−ǫ − (−s12)
−ǫ − (−s34)

−ǫ]/ǫ2

in which all double poles cancel and only sub-leading soft divergences survive.

The virtual corrections to the interference term have to be combined with the real

emission part shown in figure 3. In accordance with the virtual corrections, the collinear

1Of course all finite integrals can in principle be evaluated by using the LoopTools package [27]. The

D = 6 boxes can be written as linear combinations of 3- and 4-point functions in D=4. If IR divergences

are present, a small regulator mass must be used, but its dependence can be made arbitrarily small as the

D=6 box integral is IR finite.
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paT
, pbT

> 20 GeV ηa · ηb < 0

ηj < 5 |ηa − ηb| > 4.2

sab > (600 GeV)2

Table 1: The cuts used in the following analysis which bias the Higgs Boson plus dijet sample

towards WBF. The suffices a, b label the tagged jets.

IR divergences from the three-parton final states integrate to zero, leaving only a soft

divergence proportional to 1/ε in dimensional regularisation. Due to the simple structure

of the divergences, we have used the phase space slicing method [28, 29] to isolate the IR

divergences from the real radiation part. We have checked that the remaining single poles

cancel exactly when combining the real emission with the virtual part. The phase space

integration and the numerical evaluation of integrals and coefficients is coded in a C++,

program allowing for a flexible implementation of cuts and observables.

3. Results

This study aims at investigating a possible pollution of the clean extraction of the ZZH

vertex structure by the interference terms. Therefore we will apply the cuts summarised

in table 1, which are generally used for the selection of WBF events [30] over the gluon

fusion “background”. Our input parameters for the numerical studies are taken from

either the parton density function-fit [31] in the case of αS(M2
Z) and the Review of Particle

Physics [32] for the others.

αs(M
2
Z) = 0.1205 , g2 =

GF√
2

1

8M2
W

, GF = 1.16637 × 10−5 GeV−2 (3.1)

MZ = 91.1876 GeV , MW = 80.425 GeV , sin2 θW = 0.2312 . (3.2)

We have checked that variations of the numerical values chosen for the WBF cuts have no

impact on the conclusions, nor does the exact value of the Higgs boson mass, which we

set to 115 GeV unless otherwise stated. The same is true for the choice of parton sets; we

choose to use the NLO set from ref. [31], and use 2-loop running for αs, in accordance with

the chosen pdfs.

We observe that in all the flavour and helicity channels, the finite contribution from

the 3-parton final state is numerically negligible. In fact, in the case at hand, the only rôle

of this real emission is to cancel the divergences which arise from the one-loop diagrams.

As an interference effect proportional to 2Re(MggM∗
Z + MgZM∗

g), the result is not

necessarily positive definite. In fact, the sign of the interference contribution depends on

the azimuthal angle between the two tagging jets, ∆φjj. Because of the event topology

with two well separated jets, it becomes possible to define an orientation of the azimuthal

angle which allows observability in the whole range of [−π, π), as pioneered in ref. [6, 33].

∆φjj is then defined through

|p+T
||p−T

| cos ∆φjj = p+T
· p−T

,

2|p+T
||p−T

| sin ∆φjj = εµνρσbµ
+pν

+bρ
−pσ

−,
(3.3)
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Figure 4: The ∆φjj -distribution for different helicity-configurations of the valence quarks only.

The purple histogram labelled “Sum” indicates the sum over the four contributions shown. The

sum over all valence quark flavour and helicity assignments is shown in the black histogram.
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Figure 5: The ∆φjj -distribution for various flavour and helicity-configurations. The purple his-

togram labelled “Sum” indicates the sum over the four contributions shown. The sum over all

flavour and helicity assignments including all sea flavours is shown in the black histogram.

where b+ (b−) are unit vectors in positive (negative) beam direction, and likewise for the

jet momenta p±. The cuts ensure that the two tagging jets lie in opposite hemispheres.

Figure 4 displays the contribution to the distribution in ∆φjj from the interference

terms for various helicity and flavour configurations of the valence quarks only, for a Higgs

boson mass of 115 GeV. Figure 5 displays the contribution to the distribution in ∆φjj

including sea quarks.

Due to the oscillatory behaviour, the total integrated cross section does not at all

tell the full story about the size of the impact on the ∆φjj-distribution; for example, the

integral of the contribution from the sea and valence up-quarks with negative helicity,

denoted by u−u−, is +5 ab, while the distribution peaks at more than 150 ab/rad. If

only valence quarks are considered, the integral is −30 ab, while the distribution peaks at

∼ 90 ab/rad.
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qλ af,λ bf,λ

uL 1/2 -2/3

uR 0 -2/3

dL -1/2 1/3

dR 0 1/3

Table 2: SU(2) × U(1) charges for the Zqq̄-couplings, [af,λ + bf,λ sin2(θW )]

There is an accidental cancellation of sea and valence quark contributions which leads

to the fact that the sum over all flavour and helicity assignments peaks at around 2 ab/rad

only, with an integrated effect of 1.19 ± 0.07 ab, where the error is due to the numerical

integration. Note that the integral of the absolute value of the φjj distribution,
∫ π

−π
d∆φjj|

dσ

d∆φjj
| ,

is a useful measure of the impact of the interference effect on the extraction of the ZZH-

vertex. This integral evaluates to 9.1 ± 0.1 ab, an order of magnitude larger. The total

integral over the the absolute value of the fully differential cross section leads to 29.59 ±
0.07 ab.

As can be readily seen, there is a cancellation between the contribution from each

flavour and helicity assignment; this is because the sign of quark couplings to the Z-boson

becomes relevant, since it is not squared for the interference. The flavour- and helicity sum

for each quark line therefore leads to some cancellation, resulting from the weak charges

listed in table 2. This cancellation was discussed in ref. [34] for the valence content where it

was pointed out that if sin2 θW = 1/4 and the u-valence content of the proton was exactly

twice the d-valence content for all Björken x, the contributions from uu, ud and dd would

sum to zero. However, neither of these approximations is exactly true: sin2 θW = 0.2312

and the parton distribution functions are shown in figure 6. The cancellation stemming

from the SU(2) × U(1)-flavour and helicity sums of the valence quarks can be effectively

studied by calculating the ratio
∑

f,λ

cf,λ(x,Q2)/
∑

|cf,λ(x,Q2)| where

cf,λ(x,Q2) = f(x,Q2) [af,λ + bf,λ sin2(θW )],

(3.4)

where f(x,Q2) is the relevant parton distribution function. This ratio is plotted in figure 7

(left). This figure also shows the ratio of the u-valence to the d-valence pdf, which influences

the cancellation. It follows that in QCD the cancellation due to SU(2) × U(1)-flavour and

helicity traces amounts to roughly 10−1 in the most relevant regions of the pdfs2. If one

includes the sea quarks in this argument, one sees that the ratio eq. (3.4) is modified

significantly, see figure 7 (right). Its change of sign in the relavant x-region leads to a

further reduction of the interference term after integration.

2We were not able to reproduce the one order of magnitude larger suppression factor reported in ref. [34]

within the naive Quark Model.
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Figure 6: The required parton distribution functions [31] in the relevant region of Björken x for

Q2 = 400 GeV2.
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Figure 7: The pdf-weighted sum of the SU(2) × U(1)-charges divided by the sum of the absolute

weighted charges for valence quarks only (left) and valence and sea quarks (right). The left figure

illustrates how the apparent almost complete cancellation expected from the Quark Model is in

fact not as severe once the pdfs are taken into account, as discussed in the text. The insert shows

the ratio of the valence u-quark distribution to the valence d-quark distribution for the pdf set

MRST 2004 (NLO) [31]. The right plot shows that the inclusion of sea quarks does actually alter

the pdf-weighted sum in the relevant x range such that there are additional compensations when

integrating over x.

Using the same cuts and value for the mass of the Higgs boson as in the present study,

we have checked that the total contribution to the ∆φjj-distribution from the leading

order WBF process (both Z and W+/− included) is relatively flat at around 240 fb/rad.

Therefore, the result of the interference effect reported here is unlikely to be measurable.

The smallness of the overall effect is in fact also a result of the complex phases arising

from the full one-loop calculation of the amplitudes. To illustrate this, we calculate the
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µf,a = µr,a µf,b = µr,b Integral of |dσ/d∆φjj |[ab]

paT
pbT

9.1 ± 0.1

mH/2 mH/2 13.9 ± 0.6

mH mH 9.2 ± 0.4

2mH 2mH 6.3 ± 0.3

Table 3: The dependence of the interference effect on the choices for factorisation and renormal-

isation scales, with a fixed mass of the Higgs boson of 115GeV. The variation is slightly larger

than what would be expected from renormalisation scale variations only, since the variations in

factorisation scale impacts the cancellations between SU(2) × U(1)-charges by slightly altering the

ratio defined above eq. (3.4).

average value of

|Re
(

MgZM∗
g + MggM∗

Z

)

|
|MgZM∗

g| + |MggM∗
Z |

. (3.5)

The average over phase space for this quantity is roughly 20%, which illustrates that the

relevant products and sums for the interference effect project out only a small component

of the full complex loop amplitudes.

We have checked that none of the sources of suppression discussed above depends

severely on the mass of the Higgs boson; since the amplitudes themselves depend on this

parameter only weakly, the effect of increasing the Higgs boson mass is basically nothing

but a reduction of available phase space. This reduction however is very small, since the

partonic centre of mass energy is dominated by the contribution from the jets rather than

the Higgs boson. The exact numerical value chosen for the cuts also does not affect the

relative importance of the interference effect — the effect on the interference and the WBF

signal is similar, so the relative importance of the interference is largely unchanged.

For completeness we list in table 3 the integral of the absolute ∆φjj-distribution for

various choices of the renormalisation and factorisation scales.

We chose the factorisation and renormalisation scales as in accordance with the natural

scales in the relevant high energy limit (as in ref. [35]), i.e. the factorisation scales are set

equal to the transverse momenta of the relevant jet, and the renormalisation scale for the

strong couplings are chosen correspondingly, i.e. one αs evaluated at each value of the

transverse momentum of the jets, and one at the Higgs mass. However, varying these has

no impact on the conclusions.

4. Conclusions

We have presented the calculation of the loop-induced O(α2α3
s) interference effect between

the gluon fusion and weak boson fusion processes in Higgs boson plus two jet production

at the LHC.

In the context of the weak boson fusion cuts we have evaluated all relevant one-loop

diagrams algebraically and have obtained an analytic representation of the interference
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term as a linear combination of scalar one-loop integrals. The analytic result for all the

necessary integrals is presented for general kinematics such that it can be used in other

computations.

Our expressions have been coded into a flexible computer program to test speculations

in the literature about the size of this interference contribution. We do confirm by explicit

calculation that this contribution is too small to contaminate the extraction of the ZZH-

coupling from WBF processes. Interestingly the effect which survives comes dominantly

from the virtual corrections. We have analysed in detail why this contribution is so small,

and instead of a single effect we rather find a conspiracy of several mechanisms which can

only be completely assessed having the full NLO calculation at hand.

The mechanisms basically are

• accidental cancellations between the sea quark and valence quark contributions

• compensations between different weak isospin flavours of the valence quark contribu-

tions due to their SU(2)×U(1) couplings in combination with their weights from the

(valence) quark content of the proton

• cancellations due to destructive interference of the phases from the different contri-

butions.

The exact impact of these partly accidental effects has until now not been quantified

thoroughly and was very hard to assess without an explicit calculation.

As a final comment we would like to point out that anomalous couplings which affect

the phases could change the interference pattern substantially. However, the first two

cancellation mechanisms still being present, the overall contribution is still expected to be

undetectably small.
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A. Analytic results for master integrals

The appendix contains the Master Integrals (MIs) which occur in the reduction of the

one-loop pentagon diagrams encountered in the given calculation. The analytic results

of the integrals containing only massless propagators have appeared in the literature, see

e.g. [36 – 38, 17]. Those with massive propagators have been calculated for this project.

All finite integrals can also be calculated by the LoopTools package [27], based on [39 – 41]

which we used for checking purposes.
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Figure 8: Momentum and mass assignments for a general N -point one-loop graph.

The conventions we use for the scalar triangles and boxes listed below are different

from the ones defined in [36, 38, 17, 18], as we follow the LoopTools conventions for the

argument lists, in order to comply with the “Les Houches Accord on Master Integrals”.

To be specific, for a general N -point integral as shown in figure 8, we use

ID
N ({sj1...jn

}; {m2
i }) =

∫

dDk

i πD/2

µ4−D

[(k + r1)2 − m2
1 + iδ] . . . [(k + rN )2 − m2

N + iδ]
(A.1)

= µ4−D(−1)NΓ

(

N − D

2

)

1
∫

0

(

N
∏

i=1

dzi

)

δ(1 −∑N
l=1 zl)

(

−1
2
ziSijzj − i δ

)N−D

2

,

where ri =
∑i

j=1 pj and Sij = (ri − rj)
2 − m2

i − m2
j . The results for the integrals are

characterised by the invariants sj1...jn
= (pj1 + . . . + pjn

)2 and m2
i , where the list {sj1...jn

}
contains the invariants defined by n-particle cuts of the diagram. To map the labelling of

Sij resp. figure 8 to the LoopTools conventions, the argument lists of triangles and boxes

are given by ID
3 (s1, s2, s3;m

2
3,m

2
1,m

2
2) and ID

4 (s1, s2, s3, s4; s12, s23;m
2
4,m

2
1,m

2
2,m

2
3).

The integrals listed below will also be posted shortly to the LoopForge integral database

at http://www.ippp.dur.ac.uk/LoopForge, together with some numerical benchmark points.

The triangles (A.5), (A.6), (A.8), (A.9) and the boxes (A.14), (A.15), (A.16), (A.18), (A.19)

can also be found at http://qcdloop.fnal.gov/ for certain kinematic regions.

For the analytical representations given below we use the following auxiliary functions.

The Källén function:

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx, (A.2)

the η-function:

η(x, y) = log(xy) − log(x) − log(y), (A.3)
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and the R-function [39, 40]:

R(y0, z ± iδ) =

1
∫

0

dy
log(y − z ∓ iδ) − log(y0 − z ∓ iδ)

y − y0

= Li2(z1) − Li2(z2) + η1 log(z1) − η2 log(z2) (A.4)

where

z1 =
y0

y0 − z ∓ iδ
,

z2 =
y0 − 1

y0 − z ∓ iδ

η1 = η(−z ∓ iδ, 1/(y0 − z ∓ iδ)) ,

η2 = η(1 − z ∓ iδ, 1/(y0 − z ∓ iδ)).

We work in general in D = 4 − 2ǫ dimensions but give all formulas only up to O(ε0). We

abbreviate infinitesimal displacements in the Mandelstam variables as s̃ = s + iδ.

Triangle integrals. In the figures below, a single (double) internal line represents a

massless (massive) propagator, while a single (double) external leg represents one for which

p2 is zero (non-zero).

Triangle ID
3 (s1, 0, 0; 0, 0, 0)

p1

ID
3 (s1, 0, 0; 0, 0, 0) =

Γ(1 + ε)

s1

[

1

ε2
− 1

ε
log

(−s̃1

µ2

)

+
1

2
log2

(−s̃1

µ2

)

− π2

6

]

. (A.5)

Triangle ID
3 (s1, s2, 0; 0, 0, 0)

p1

p2

ID
3 (s1, s2, 0; 0, 0, 0) =

Γ(1+ε)

s1−s2

{

1

ε

[

log

(−s̃2

µ2

)

−log

(−s̃1

µ2

)]

−1

2
log2

(−s̃2

µ2

)

+
1

2
log2

(−s̃1

µ2

)}

. (A.6)
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Triangle ID
3 (s1, s2, s3; 0, 0, 0)

ID
3 (s1, s2, s3; 0, 0, 0) = − 1

√

λ(s1, s2, s3) − iδ s1

[

2Li2

(

−x−

y+

)

+ 2Li2

(

− y−
x+

)

+
π2

3

+
1

2
log2

(

x−

y+

)

+
1

2
log2

(

y−
x+

)

+
1

2
log2

(

x+

y+

)

− 1

2
log2

(

x−

y−

)]

(A.7)

with

x± =
s1 + s3 − s2 ∓

√

λ(s1, s2, s3) − iδ s1

2 s1

, y± = 1 − x∓.

Note that the permutation symmetry of the integral in s1, s2, s3 is preserved, although not

manifest due to the choice of the denominator in x±.

Triangle ID
3 (s1, 0, 0; 0,M

2, 0)

ID
3 (s1, 0, 0; 0,M

2 , 0) =
Γ(1 + ε)

−s1

{

1

ε

[

log

(−s̃1 + M2

µ2

)

− log

(

M2

µ2

)]

(A.8)

+Li2

(

s̃1

s̃1 − M2

)

− 1

2

[

log2

(−s̃1 + M2

µ2

)

− log2

(

M2

µ2

)]}

Triangle ID
3 (s1, s2, 0; 0,M

2, 0)

ID
3 (s1, s2, 0; 0,M

2, 0) =
Γ(1 + ε)

s2 − s1

{

1

ε

[

log

(−s̃1 + M2

µ2

)

− log

(−s̃2 + M2

µ2

)]

+Li2

(

s̃1

s̃1 − M2

)

− Li2

(

s̃2

s̃2 − M2

)

+
1

2
log2

(−s̃2 + M2

µ2

)

− 1

2
log2

(−s̃1 + M2

µ2

)}

(A.9)

Triangle ID
3 (s1, s2, 0; 0, 0,M

2)
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ID
3 (s1, s2, 0; 0, 0,M

2) =
1

s2 − s1

{

R(x0, x̃1) −
π2

6
+ Li2

(

1 − 1

x0 − iδ

)}

(A.10)

with x0 =
s1

s1 − s2

, x̃1 =
s̃1

s1 − s2 + M2

Triangle ID
3 (s1, s2, 0; 0,M

2,M2)

ID
3 (s1, s2, 0; 0,M

2,M2) =
1

s2 − s1

{

Li2

(

s̃1

M2

)

− Li2

(

1

x+

)

− Li2

(

1

x−

)

+ R

(

x0,
M2

s̃1

)

+R(1 − x0, x−) − R(x0, x−) − η0 log

(

1 − x0

−x0

)}

(A.11)

with

x0 = 1 − s1

s2

, x± =
1

2



1 ±
√

1 − 4M2

s̃2





η0 = η

(

1 − s̃1

M2
x0,

M2

M2 − s̃2x0(1 − x0)

)

Triangle ID
3 (s1, s2, s3; 0,M

2,M2)

ID
3 (s1, s2, s3; 0,M

2,M2) =
1

√

λ(s1, s2, s3)

[

R(x−, x̃1) − R(x+, x̃1) + R(1 − x−, x̃0)

−R(1 − x+, x̃0) − R(x−, x̃0) + R(x+, x̃0)

−η− log

(

1 − x−

−x−

)

+ η+ log

(

1 − x+

−x+

)]

(A.12)

with

x± =
s1 + s2 − s3 ∓

√

λ(s1, s2, s3)

2s2

x̃0 =
1

2



1 −
√

1 − 4M2

s̃2



 , x̃1 =
s̃1 − M2

s1 − s3

η± = η

(

−s3x± − s1(1 − x±) + M2 − iδ,
1

M2 − x±(1 − x±)s̃2

)

.
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In this formula we assume momentum conservation and at least one positive invariant sj.

The latter condition is always guaranteed if the triangle graph is a subgraph of 1 → n or

2 → n scattering kinematics. These lead to a positive Kaellen function: λ(s1, s2, s3) > 0.

Box integrals. The results are given here for D=4-2ǫ dimensional boxes. The conversion

relation to 6-dimensional boxes is achieved by the formula

ID
4 =

4
∑

i=1

bi I
D
3,i + (D − 3)B ID+2

4 , (A.13)

where bi =
∑4

j=1 S−1
ij and B =

∑4
i=1 bi. ID

3,i denotes the “pinch” triangle stemming from a

box where the ith propagator is omitted. All pinch triangle integrals needed by eq. (A.13)

are given above. We use s12 = s and s23 = t in the following.

Box ID
4 (s1, 0, 0, 0; s, t; 0, 0, 0, 0)

ID
4 (s1, 0, 0, 0; s, t; 0, 0, 0, 0) =

Γ(1 + ε)

st

{

2

ε2
− 2

ǫ

[

log

(−s̃

µ2

)

+ log

(−t̃

µ2

)

− log

(−s̃1

µ2

)]

+2Li2

(

1 − s̃

s̃1

)

+ 2Li2

(

1 − t̃

s̃1

)

+ 2 log

(

s̃

s̃1

)

log

(

t̃

s̃1

)

+ log2

(−s̃

µ2

)

− log2

(−s̃1

µ2

)

+ log2

(−t̃

µ2

)

− 2π2

3

}

(A.14)

Box ID
4 (s1, s2, 0, 0; s, t; 0, 0, 0, 0)

ID
4 (s1, s2, 0, 0; s, t; 0, 0, 0, 0) = (A.15)

Γ(1 + ε)

st

{

1

ε2
+

1

ε

[

log

(−s̃1

µ2

)

+ log

(−s̃2

µ2

)

− log

(−s̃

µ2

)

− 2 log

(−t̃

µ2

)]

− π2

6

−2Li2

(

1 − s̃1

t̃

)

− 2Li2

(

1 − s̃2

t̃

)

+ log

(

s̃

s̃1

)

log

(

s̃

s̃2

)

− log2

(

s̃

t̃

)

+
1

2
log2

(−s̃

µ2

)

− 1

2
log2

(−s̃1

µ2

)

− 1

2
log2

(−s̃2

µ2

)

+ log2

(−t̃

µ2

)}
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Box ID
4 (s1, 0, s3, 0; s, t; 0, 0, 0, 0)

ID
4 (s1, 0, s3, 0; s, t; 0, 0, 0, 0) = (A.16)

Γ(1 + ε)

st − s1s3

{

2

ǫ

[

log

(−s̃1

µ2

)

+ log

(−s̃3

µ2

)

− log

(−s̃

µ2

)

− log

(−t̃

µ2

)]

+ log2

(−s̃

µ2

)

− log2

(−s̃1

µ2

)

− log2

(−s̃3

µ2

)

+ log2

(−t̃

µ2

)

−2Li2

(

1 − s̃1

s̃

)

− 2Li2

(

1 − s̃3

s̃

)

− 2Li2

(

1 − s̃1

t̃

)

− 2Li2

(

1 − s̃3

t̃

)

+2Li2

(

1 − s̃1 s̃3

s̃ t̃

)

− log2

(

s̃

t̃

)

+ 2 η

(

s̃3

s̃
,
s̃1

t̃

)

log

(

1 − s̃1 s̃3

s̃ t̃

)}

Box ID
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0)

We find for the 6-dimensional integral

ID+2
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0) =
−t + M2

t(s1 − s − t)

[

R (x0, x̃2) + Li2

(

1 − 1

x̃0

)

− π2

6

]

− M2

t(s1 − s)

[

R (x1, x̃2) + Li2

(

1 − 1

x̃1

)

− π2

6

]

(A.17)

where

x0 =
s

s + t − s1

, x̃0 = x0 +
iδ

t − M2
,

x1 =
s

s − s1

, x̃1 = x1 − iδ, x̃2 =
s̃

s − s1 + M2

The integral in D = 4 − 2ǫ is obtained by

ID
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0) = b1 I3(s, 0, 0; 0, 0, 0) + b2 I3(s1, t, 0; 0,M
2, 0) (A.18)

+b3 I3(s1, 0, s; 0,M
2, 0) + b4 I3(t, 0, 0; 0,M

2, 0)

+B ID+2
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0)

with

b1 = − 1

M2 − t
, b2 =

s1 − t

s (M2 − t)
, b3 =

t(s − s1) + M2(s + 2t − s1)

s (M2 − t)2

b4 = − t

s (M2 − t)
, B =

2 t (s + t − s1)

s (M2 − t)2
.
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Box ID
4 (s1, s2, 0, 0; s, t; 0,M

2,M2, 0)

ID
4 (s1, s2, 0, 0; s, t; 0,M

2,M2, 0) =
Ipole + Ifinite

st − (s + t − s1)M2
(A.19)

with

Ipole = −Γ(1 + ǫ)

ǫ

[

log

(−t̃ + M2

M2

)

− log

(−s̃1 + M2

−s̃ + M2

)

]

Ifinite = log2

(−t̃ + M2

µ2

)

− log2

(

M2

µ2

)

− log2

(−s̃1 + M2

µ2

)

+ log2

(−s̃ + M2

µ2

)

−2R(x0, x̃1) + 2R(x0, x̃2)

+R(1 − x1, x−) − R(x1, x−) − R(1 − x2, x−) + R(x2, x−)

−
[

log
(

−s̃2/µ
2
)

+ log(x+ − x1) + log(x1 − x−)
]

log

(

1 − x̃1

−x̃1

)

+
[

log
(

−s̃2/µ
2
)

+ log(x+ − x2) + log(x2 − x−)
]

log

(

1 − x̃2

−x̃2

)

x± =
1

2



1 ±
√

1 − 4M2

s̃2



 , x0 =
s

s + t − s1

x1 =
M2

t
, x̃1 =

M2 − iδ

t
, x2 =

s − M2

s − s1

, x̃2 =
s̃ − M2

s − s1

Box ID
4 (s1, 0, s3, 0; s, t; 0, 0,M

2 ,M2):

ID
4 (s1, 0, s3, 0; s, t; 0, 0,M

2 ,M2) =
I− − I+

√

det(S) − Jiδ
(A.20)

with the auxiliary integrals3

I± = R

(

x±,
M2

t̃

)

− R

(

1 − x±,
M2

s̃

)

+ R(1 − x±, x−
0 ) − R(x±, x−

0 )

+ log

(

1 − x±

−x±

)[

log

(

s̃

s̃1

)

+ log

(

t̃

s̃3

)

+ log

(

x± − M2

t̃

)

− log(x+
0 − x±) − log(x± − x−

0 ) + log

(

1 − x± − M2

s̃

)]

(A.21)

3The ± label of the integrals I± are related to x±. The exchange of ± has no effect on x
−

0 and x
+

0 .
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where

det(S) = [st − s1s3 + M2(s − t)]2 + 4M2(st − s1s3)(−s + s1 + M2)

J = 2(s3 − t)[st − s1s3 + M2(s − t)] + 4(st − s1s3)(−s + s1 + M2),

x± =
(st − s1s3) + M2(s − t) ±

√

det(S) − Jiδ

2 (st − s1s3)
,

x±
0 =

1

2



1 ±
√

1 − 4M2

s̃3





Checks on the integrals. We tested the Master Integrals by comparing our results nu-

merically with LoopTools [27]. For the IR finite box and triangle integrals this is straight-

forward. The IR divergent box integrals have been checked indirectly by mapping to the

6D case which is IR finite. Using eq. (A.13) the 1/ε poles cancel when combining the D-

dimensional box with the triangle pinch integrals. The same expression can be evaluated

with LoopTools by using a mass regulators in the IR divergent integrals. In the given

IR finite combinations the cut-off dependence is polynomial and can be made arbitrarily

small. We have tested the formulae in all kinematically distinguishable regions. For ex-

ample, ID
3 (s1, s2, s3; 0,M

2,M2) has been checked in the regions resulting from combining

the conditions (s1 < 0, 0 < s1 < M2, M2 < s1), (s2 < 0, 0 < s2 < 4M2, 4M2 < s2) and

(s3 < 0, 0 < s3 < M2, M2 < s3) such that the Kaellen function is positive in line with the

comment below equation (A.12).
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